skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Jianing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Vanadium dioxide (VO2) is a well‐studied Mott‐insulator because of the very abrupt physical property switching during its semiconductor‐to‐metal transition (SMT) around 341 K (68 °C). In this work, through novel oxide‐metal nanocomposite designs (i.e., Au:VO2and Pt:VO2), a very broad range of SMT temperature tuning from≈323.5 to≈366.7 K has been achieved by varying the metallic secondary phase in the nanocomposites (i.e., Au:VO2and Pt:VO2thin films, respectively). More surprisingly, the SMTTccan be further lowered to≈301.8 K (near room temperature) by reducing the Au particle size from 11.7 to 1.7 nm. All the VO2nanocomposite thin films maintain superior phase transition performance, i.e., large transition amplitude, very sharp transition, and narrow width of thermal hysteresis. Correspondingly, a twofold variation of the complex dielectric function has been demonstrated in these metal‐VO2nanocomposites. The wide range physical property tuning is attributed to the band structure reconstruction at the metal‐VO2phase boundaries. This demonstration paved a novel approach for tuning the phase transition property of Mott‐insulating materials to near room temperature transition, which is important for sensors, electrical switches, smart windows, and actuators. 
    more » « less
  2. Abstract Key challenges limiting the adoption of metallic plasmonic nanostructures for practical devices include structural stability and the ease of large‐scale fabrication. Overcoming these issues may require novel metamaterial fabrication with potentials for improved durability under extreme conditions. Here, a self‐assembled growth of a hybrid plasmonic metamaterial in thin‐film form is reported, with epitaxial Ag nanopillars embedded in TiN, a mechanically strong and chemically inert matrix. One of the key achievements lies in the successful control of the tilt angle of the Ag nanopillars (from 0° to 50°), which is attributed to the interplay between the growth kinetics and thermodynamics during deposition. Such an anisotropic nature offered by the tilted Ag nanopillars in TiN matrix is crucial for achieving broadband, asymmetric optical selectivity. Optical spectra coupled with numerical simulations demonstrate strong plasmonic resonance, as well as angular selectivity in a broad UV–vis to near‐infrared regime. The nanostructured metamaterials in this work, which consist of highly conductive metallic nanopillars in a durable nitride matrix, have the potential to serve as a novel hybrid material platform for highly tailorable nanoscale metamaterial designs, suitable for high temperature optical applications. 
    more » « less